## Jones Calculus

The mathematics of evolving fields with two complex components is known already in Jones calculus.

The mathematics of evolving fields with two complex components is known already in Jones calculus.

This blog entry delivers an other example of an elliptic complex which can be used in discrete Atiyah-Singer or Atiyah-Bott type setups as examples. We had seen that when deforming an elliptic complex with an integrable Lax deformation, we get complex elliptic complexes. We had wondered in that blog entry whether a complex can lead to quaternion-valued fields. The discussion … ….

As a follow-up note to the strong ring note, I tried between summer and fall semester to formulate a discrete Atiyah-Singer and Atiyah-Bott result for simplicial complexes. The classical theorems from the sixties are heavy, as they involve virtually every field of mathematics. By searching for analogues in the discrete, I hoped to get a grip on the ideas. (I … ….

The strong ring is a category of geometric objects G which are disjoint unions of products of

simplicial complexes. Each has a Dirac operator D and a connection operator L. Both are related in

various ways to topology.

Implementing the Dirac operator D for products of simplicial complexes without going to the Barycentric refined simplicial complex has numerical advantages. If G is a finite abstract simplicial complex with n elements and H is a finite abstract simplicial complex with m elements, then is a strong ring element with n*m elements. Its Barycentric refinement is the Whitney complex of … ….

In the book ‘This Idea Must Die: Scientific Theories That Are Blocking Progress’, there are two entries which caught my eye because they both belong to interests of mine: geometry and calculus. The two articles are provided below. [I believe it is “fair use” as a reprint of these two articles helps not only to promote the book but also … ….

The strong ring The strong ring generated by simplicial complexes produces a category of geometric objects which carries a ring structure. Each element in the strong ring is a “geometric space” carrying cohomology (simplicial, and more general interaction cohomologies) and has nice spectral properties (like McKean Singer) and a “counting calculus” in which Euler characteristic is the most natural functional. … ….

Elements in the strong ring within the Stanley-Reisner ring still can be seen as geometric objects for which mathematical theorems known in topology hold. But there is also arithemetic. We remark that the multiplicative primes in the ring are the simplicial complexes. The Sabidussi theorem imlies that additive primes (particles) have a unique prime factorization (into elementary particles).

The graph limit We can prove now that the graph limit of the connection graph of Ln x Ln which is the strong product of Ln‘ with itself has a mass gap in the limit n to infinity. The picture below shows this product graph for n=13, and to the right s part of the spectrum near 0 for n=40. … ….

Arithmetic with networks The paper “On the arithmetic of graphs” is posted. (An updated PDF). The paper is far from polished, the document already started to become more convoluted as more and more results were coming in. There had been some disappointment early June when realizing that the Zykov multiplication (which I had been proud of discovering in early January) … ….