Three Kepler Problems

Depending on scale, there are three different Kepler problems: the Hydrogen atom, the Newtonian Kepler problem as well as the binary Blackhole problem. The question whether there is a unifying model which covers all of them is part of the quest of finding a quantum theory of gravity.

Hardy-Littlewood Prime Race

The Hardy-Littlewood race has been running now for more than a year on my machine. The Pari code is so short that it is even tweetable. Here are some slides which also mention Gaussian Goldbach: What do primes have to do with quantum calculus? First of all, analytic number theory is all about calculus. But as mentioned in other places … ….

The quantum plane

Update of May 27, 2017: I dug out some older unpublished slides authored in 2015 and early 2016. I added something about the quantum gap and something on the quantum plane at the very end. Here is the presentation, just spoken now. The quantum line In one dimension, there is a natural compact metric space D on which one has … ….

The finitist bunker

As Goedel has shown, mathematics can not tame the danger that some inconsistency develops within the system. One can build bunkers but never will be safe. But the danger is not as big as history has shown. Any crisis which developed has been very fruitful and led to new mathematics. (Zeno paradox->calculus, Epimenids paradox ->Goedel, irrationality crisis ->number fields etc.