## Tensor Products Everywhere

The tensor product is defined both for geometric objects as well as for morphisms between geometric objects. It appears naturally in connection calculus.

The tensor product is defined both for geometric objects as well as for morphisms between geometric objects. It appears naturally in connection calculus.

We look at examples of functional integrals on finite geometries.

As Goedel has shown, mathematics can not tame the danger that some inconsistency develops within the system. One can build bunkers but never will be safe. But the danger is not as big as history has shown. Any crisis which developed has been very fruitful and led to new mathematics. (Zeno paradox->calculus, Epimenids paradox ->Goedel, irrationality crisis ->number fields etc.

As we have an internal energy for simplicial complexes and more generally for every element in the Grothendieck ring of CW complexes we can run a Hamiltonian system on each geometry. The Hamiltonian is the Helmholtz free energy of a quantum wave.

Energy theorem The energy theorem tells that given a finite abstract simplicial complex G, the connection Laplacian defined by L(x,y)=1 if x and y intersect and L(x,y)=0 else has an inverse g for which the total energy is equal to the Euler characteristic with . The determinant of is the Fermi characteristic . In the “spring 2017 linear algebra Mathematica … ….

The history of the developent of energy and entropy is illustrated. This page is a picture book featuring some of the people involved shaping the concept of energy.

Over spring break, the Helmholtz paper [PDF] has finished. (Posted now on “On Helmholtz free energy for finite abstract simplicial complexes”.) As I will have little time during the rest of the semester, it got thrown out now. It is an interesting story, relating to one of the greatest scientist, Hermann von Helmholtz (1821-1894). It is probably one of the … ….

A rather unfamiliar picture of a famous mathematician/physisist.

Energy U and Entropy S are fundamental functionals on a simplicial complex equipped with a probability measure. Gibbs free energy U-S combines them and should lead to interesting minima.

Entropy is the most important functional in probability theory, Euler characteristic is the most important functional in topology. Similarly as the twins Apollo and Artemis displayed above they are closely related. Introduction This blog mentions some intriguing analogies between entropy and combinatorial notions. One can push the analogy in an other direction and compare random variables with simplicial complexes, Shannon … ….