## Unique prime factorization for Zykov addition

We give two proofs that the additive Zykov monoid on the category of finite simple graphs has unique prime factorization. We can determine quickly whether a graph is prime and also produce its prime factorization.

## Hardy-Littlewood Prime Race

The Hardy-Littlewood race has been running now for more than a year on my machine. The Pari code is so short that it is even tweetable. Here are some slides which also mention Gaussian Goldbach: What do primes have to do with quantum calculus? First of all, analytic number theory is all about calculus. But as mentioned in other places … ….

## The Hydrogen trace of a complex

Motivated by the Hamiltonian of the Hydrogen atom, we can look at an anlogue operator for finite geometries and study the spectrum. There is an open conjecture about the trace of this operator.

## The quantum plane

Update of May 27, 2017: I dug out some older unpublished slides authored in 2015 and early 2016. I added something about the quantum gap and something on the quantum plane at the very end. Here is the presentation, just spoken now. The quantum line In one dimension, there is a natural compact metric space D on which one has … ….

## A mass gap in the Barycentric limit

The Barycentric limit of the density of states of the connection Laplacian has a mass gap.

## Tensor Products Everywhere

The tensor product is defined both for geometric objects as well as for morphisms between geometric objects. It appears naturally in connection calculus.

## The Helmholtz Hamiltonian System

As we have an internal energy for simplicial complexes and more generally for every element in the Grothendieck ring of CW complexes we can run a Hamiltonian system on each geometry. The Hamiltonian is the Helmholtz free energy of a quantum wave.

## Energy theorem for Grothendieck ring

Energy theorem The energy theorem tells that given a finite abstract simplicial complex G, the connection Laplacian defined by L(x,y)=1 if x and y intersect and L(x,y)=0 else has an inverse g for which the total energy is equal to the Euler characteristic with . The determinant of is the Fermi characteristic . In the “spring 2017 linear algebra Mathematica … ….

## Helmholtz free energy for simplicial complexes

Over spring break, the Helmholtz paper [PDF] has finished. (Posted now on “On Helmholtz free energy for finite abstract simplicial complexes”.) As I will have little time during the rest of the semester, it got thrown out now. It is an interesting story, relating to one of the greatest scientist, Hermann von Helmholtz (1821-1894). It is probably one of the … ….

## Energy, Entropy and Gibbs free Energy

Energy U and Entropy S are fundamental functionals on a simplicial complex equipped with a probability measure. Gibbs free energy U-S combines them and should lead to interesting minima.