Hardy-Littlewood Prime Race

The Hardy-Littlewood race has been running now for more than a year on my machine. The Pari code is so short that it is even tweetable. Here are some slides which also mention Gaussian Goldbach: What do primes have to do with quantum calculus? First of all, analytic number theory is all about calculus. But as mentioned in other places … ….

The quantum plane

Update of May 27, 2017: I dug out some older unpublished slides authored in 2015 and early 2016. I added something about the quantum gap and something on the quantum plane at the very end. Here is the presentation, just spoken now. The quantum line In one dimension, there is a natural compact metric space D on which one has … ….

Energy theorem for Grothendieck ring

Energy theorem The energy theorem tells that given a finite abstract simplicial complex G, the connection Laplacian defined by L(x,y)=1 if x and y intersect and L(x,y)=0 else has an inverse g for which the total energy is equal to the Euler characteristic with . The determinant of is the Fermi characteristic . In the “spring 2017 linear algebra Mathematica … ….

Helmholtz free energy for simplicial complexes

Over spring break, the Helmholtz paper [PDF] has finished. (Posted now on “On Helmholtz free energy for finite abstract simplicial complexes”.) As I will have little time during the rest of the semester, it got thrown out now. It is an interesting story, relating to one of the greatest scientist, Hermann von Helmholtz (1821-1894). It is probably one of the … ….