Calculus without limits

I looked at a quadratic cohomology example. For theoretical backgroun, see the ArXiv paper “Fusion inequality for quadratic cohomology”. It is the case when U is a union of two disjoint smallest open sets in a 2-sphere for which I take the Icosahedron, one of the Platonic solids and a …

## Fusion Inequality for Quadratic Cohomology

While linear cohomology deals with functions on simplices, quadratic cohomology deals with functions on pairs of simplices that intersect. Linear cohomology is to Euler characteristic what quadratic cohomology is to Wu characteristic $w(G) = \sum_{x,y, x \cap y \in G} w(x) w(y)$. If the simplicial complex is split into a …

## Finite Topologies

Finite topological spaces are only interesting if non-Hausdorff. The reason is that every Hausdorff finite topological space is just the boring discrete topology. The topology from a simplicial complex is an example of a nice and interesting topology because it produces the right connectivity and dimension on the complex without …

## Wu Betti Conjecture

It is not quite yet a poem, but here, as promised in the movie, some code to generate both the Betti vector and Wu betti vector of a random submanifold in a given manifold. It is 25 lines without any additional libraries, so not yet quite a poem, but it …

## Back to Wu Characteristic

The video below is an attempt to get back to an older story of Wu characteristic. One of the things which still needs to be explored badly is the Wu cohomology of the complement K of knots H and more generally of the complement K of k-dimensional manifolds H in …

## A multi-particle energy theorem

A finite abstraact simplicial complex or a finite simple graph comes with a natural finite topological space. Some quantities like the Euler characteristic or the higher Wu characteristics are all topological invariants. One can also reformulate the Lefschetz fixed point theorem for continuous maps on finite topological spaces.

## A Perron-Frobenius Vector to Wu Characteristic

The Wu characteristic of a simplicial complex is the eigenvalue of an
eigenvector to a matrix L J, where L is the connection Laplacian and J
a checkerboard matrix. The eigenvector has components whicih are
Wu intersection numbers.

## Interaction cohomology

[Update, March 20, 2018: see the ArXiv text. See also an update blog entry with some Mathematica code. More mathematica code can be obtained from the TeX Source of the ArXiv article.]. Classical calculus we teach in single and multi variable calculus courses has an elegant analogue on finite simple …