Discrete Atiyah-Singer and Atiyah-Bott

As a follow-up note to the strong ring paper, I tried between summer and fall semester to formulate a discrete Atiyah-Singer and Atiyah-Bott result fir simplicial complexes. The classical theorems from the sixties are heavy. By searching for analogues in the discrete, I hoped to get a grip on the ideas (I do not claim to really grasp both theorems. … ….

The Dirac operator of Products

Implementing the Dirac operator D for products of simplicial complexes without going to the Barycentric refined simplicial complex has numerical advantages. If G is a finite abstract simplicial complex with n elements and H is a finite abstract simplicial complex with m elements, then is a strong ring element with n*m elements. Its Barycentric refinement is the Whitney complex of … ….

Do Geometry and Calculus have to die?

In the book ‘This Idea Must Die: Scientific Theories That Are Blocking Progress’, there are two entries which caught my eye because they both belong to interests of mine: geometry and calculus. The two articles are provided below. [I believe it is “fair use” as a reprint of these two articles helps not only to promote the book but also … ….

The Two Operators

The strong ring The strong ring generated by simplicial complexes produces a category of geometric objects which carries a ring structure. Each element in the strong ring is a “geometric space” carrying cohomology (simplicial, and more general interaction cohomologies) and has nice spectral properties (like McKean Singer) and a “counting calculus” in which Euler characteristic is the most natural functional. … ….

Space and Particles

Elements in the strong ring within the Stanley-Reisner ring still can be seen as geometric objects for which mathematical theorems known in topology hold. But there is also arithemetic. We remark that the multiplicative primes in the ring are the simplicial complexes. The Sabidussi theorem imlies that additive primes (particles) have a unique prime factorization (into elementary particles).

One ring to rule them all

Arithmetic with networks The paper “On the arithmetic of graphs” is posted. (An updated PDF). The paper is far from polished, the document already started to become more convoluted as more and more results were coming in. There had been some disappointment early June when realizing that the Zykov multiplication (which I had been proud of discovering in early January) … ….

Three Kepler Problems

Depending on scale, there are three different Kepler problems: the Hydrogen atom, the Newtonian Kepler problem as well as the binary Blackhole problem. The question whether there is a unifying model which covers all of them is part of the quest of finding a quantum theory of gravity.