Calculus without limits

## Dark Matter Lemma

A real symmetric matrix is called a Dirac matrix, if it is a block Jacobi matrix in which the side diagonal entries are nilpotent, meaning . For such a matrix, the square is called the Laplacian. It is block diagonal . If is a continuous function such that is invertible, …

## QR deformation

A discrete geometry does not have a lot of symmetry as the automorphism group is in general empty. The isospectral set of the Laplacian or Dirac matrix is large enough however. Note that when dealing with a specific class of operators like Dirac matrices, then not all isospectral matrices qualify. …

## Kublanovskaya-Francis Transform of Dirac matrix

Since finding the isospectral deformation of the exterior derivative (see “An integrable evolution equation in geometry” from June 1, 2013 and “Isospectral Deformations of the Dirac operator” from June 24, 2013), I tried to find discrete time integrable evolutions of the Dirac operator. Last Sunday, while experimenting in a coffee …

## Form Curvatures

An abstract delta set (G,D,R) is a finite set G with n elements, a selfadjoint Dirac matrix with and a dimension vector defining a partition and Hilbert spaces called the spaces of k-forms. The exterior derivative maps to . The Hodge Laplacian is a block diagonal matrix defining the Hodge …

## Stability of the Vacuum

Explanations of the Casimir effect using common physics intuition like “polarization” (it originally was studied in the context of van der Waals forces) or “pressure” do not work. The reason in the case of the Casimir effect is that in the case of two planes or two cylinders the Casimir …

## Geometry of Delta Sets

In this presentation, there is a bit of advertisement for finite geometry and delta sets in particular. I also tried to get a bit into the history of finitist ideas in geometry and physics(starting with Riemann). One usually thinks about finite projective spaces when talking about “finite geometries”. I like …

I looked at a quadratic cohomology example. For theoretical backgroun, see the ArXiv paper “Fusion inequality for quadratic cohomology”. It is the case when U is a union of two disjoint smallest open sets in a 2-sphere for which I take the Icosahedron, one of the Platonic solids and a …

## Fusion Inequality for Quadratic Cohomology

While linear cohomology deals with functions on simplices, quadratic cohomology deals with functions on pairs of simplices that intersect. Linear cohomology is to Euler characteristic what quadratic cohomology is to Wu characteristic $w(G) = \sum_{x,y, x \cap y \in G} w(x) w(y)$. If the simplicial complex is split into a …

## The most general finite geometric structure

Delta sets are very general. They include simplicial complexes, open sets in simplicial complexes, quotients of simplicial complexes, quivers and so multi-graphs or simply hypergraphs, sets of sets. For the later, the geometry is not that interesting in general. As for quivers, the associated delta set is one dimensional only …

## Atoms of Space

The smallest open sets in a finite topological space form the atom of space. It was almost 100 years ago, when one has turned away from non-Hausdorff topological spaces and decided they are less relevant (Hausdorff seems have convinced Alexandrov and Hopf to focus on Hausdorff property). This is unfortunate …

## Geometry of Delta Sets

Historically, geometry started in Euclidean spaces. There was no concept of coordinate when Euclid wrote the “elements”. Using “points” and “lines” as building blocks and some axioms, the reader there is lead to quantitative concepts like “length”, “angle” or “area” and many propositions and theorem. Only with Descartes, the concept …

## Gauss-Bonnet for Delta Sets

Finite geometric categories: graphs – simplicial complexes -simplicial sets – delta sets Delta sets were originally called semi-simplicial sets by Samuel Eilenberg and Joseph Zilber in 1950. Similarly than semi-rings are more general than rings or semi-groups are more general than groups, also delta sets are more general than simplicial …

## Sard for delta sets

The discrete Sard theorem in the simplest case (which I obtained in 2015) that a function from a discrete d-manifold to {-1,1} has level sets that are (d-1) manifolds or empty. (See here for the latest higher generalization to higher codimension.) A simplicial complex is a d-manifold if every unit …

## Arnold’s Theme

Here are some links to the articles mentioned in the talk: It surprisingly often happens that a big conjecture tumbles at around the same time. In the case of the Arnold conjecture, several approaches, spear headed by Conley-Zehnder, Eliashberg and Floer have reached the goal. But also almost always with …

## Last geometric theorem

The last geometric theorem of Poincare was conceived shortly before the death of Poincare. Poincare had a prostate problem when he was 58 and went to surgery in 1912 which he did not survive. Fortunately his last theorem was sent to an Italian journal two weeks before he died, but …

## Finite Topologies

Finite topological spaces are only interesting if non-Hausdorff. The reason is that every Hausdorff finite topological space is just the boring discrete topology. The topology from a simplicial complex is an example of a nice and interesting topology because it produces the right connectivity and dimension on the complex without …

## Wu Betti Conjecture

It is not quite yet a poem, but here, as promised in the movie, some code to generate both the Betti vector and Wu betti vector of a random submanifold in a given manifold. It is 25 lines without any additional libraries, so not yet quite a poem, but it …

## Wu Cohomology for Manifolds

My experiments so far indicate that the Wu cohomology of a d-manifold G can be read off from the usual cohomology. If is the Betti vector of G then (0,\dots,0,b_d,b_{d-1},\dots,b_1,b_0)\$ appears to be the Wu Betti vector. So far, this is only a conjecture. In the talk, the case , …

## Cylinder And Moebius Strip

[Update 3/5/2024: given that one knows now the optimal Moebius strip, one can wonder about the much easier question of what the smallest simplicial complex producing a cylinder or Moebius strip is. Below, I use in both cases 6 facets (triangles). For the Moebius strip, one can do with 5 …

## Back to Wu Characteristic

The video below is an attempt to get back to an older story of Wu characteristic. One of the things which still needs to be explored badly is the Wu cohomology of the complement K of knots H and more generally of the complement K of k-dimensional manifolds H in …

## Noncommutativity code example

Here is some code illustrating the story. We take the 4 manifold (a favorite manifold of Heinz Hopf) and consider two random functions f,g. Now generate the two manifolds and . They are both 2 manifolds. It goes as follows: the sign data of {f,g} are in which are 4 …

## Investigating all maps

In my paper “Manifolds from Partitions”, I stated that that the case of empty graphs can not occur, but did not prove it. It is indeed not true. Here is an update [PDF] with an additional section. It is very rare although that a surjective map produces still an empty …

## Colorful partitions

My experience from my Schweizer Jugend Forscht adventure was not only invaluable from the scientific point of view, I also met some other young aspiring scientists (here is the book with all the participants (PDF)) which was published in 1983 (when I was already a second year ETH student), and …

## From Numbers to Particles

A nice thing about mathematics is that it has no dogmas, statements which have to be taken on good faith. Axioms come closest, but by nature also, they come with an honest warning that one can either accept them or not. Already Euclid fought with the parallel axiom. Today it …

## Algorithmic Poetry

Brevity contributes both to clarity and simplicity. Surprisingly, it often contributes to generality. I myself am obsessed with brevity. I especially love short code. A short program is like a poem. If it is also effective, it can also be used as building blocks of larger programs. The Unix philosophy …

## Partitions and Graphs

Happy new year 2024. Here is the code displayed on the right upper corner of the board written this morning when wondering how frequent the situation is that the year is divisible by the year modulo 1000 minus 1. This happens for 2024 as it is divisible by 23. The …

First about Sard: (a write-up [PDF] ). I also display a bit my hobbies: Panorama photography (since 1999, a time when panoramas were still stichted). Later with a mirror camera. Then with GoPro Max, Iphone and more recently with the insta 360 camera (I for strange tech enhousiastic reasons pride …

## Lagrange Riddle

In the program to get rid of any notion of infinity, one necessarily has to demonstrate that very classical and entrenched notions like topics appearing in a contemporary multi-variable calculus course can be replaced and used. Artificial discretisations do not help much in that; they serve as numerical schemes but …

## A Trinity of Geometric Structures

There are lots of finite geometric structures. Graphs are probably the most clear ones. Simplicial complexes can not be beaten in simplicity. And delta sets can not be surpassed by generality. So, they are a geometric incarnation of the paradigm “Simplicity, Clarity and Generality”, which appeared on the book cover …

## On the Manifold Playground

Here is the table shown in part 2 of the presentation showing some of the toys. It had been generated by Mathematica. It uses manifolds from the manifold page of Frank H. Lutz mentioned in the clip. About the left hand side (of the chalkboard) with some history pointers of …

## Morse Sard and Small Physics

One of the nice things in mathematics is that one can play with models which do not necessarily have to do directly with the real world, whatever the later means. We can look at abstract objects, like finite simple groups, number theory in some number field or topology in 1001 …

## Foliage inequalities

Arboricity and Chromatic number are linked in various ways. The topic also links to difficult NP complete problems. We muse about how often it is the case that for manifolds the question is easy. An example is the Hamiltonian path problem which is linked to Peg Solitaire

## Arboricity and 4-manifolds

One of the nice things to work in a subject not having grown up in is to be in steep learning curves. I have thought about the arboricity of manifolds for a while now but the fact that the arboricity can be arbitrary large for d-manifolds with d larger than …

## Arboricity of spheres

We explain why the arboricity of 3 spheres can take values between 4 and 7 and mention that for 3 manifolds the upper bound is 9 (but believed to be 7).

## Discrete Vector Fields

A notion of a discrete vector should work for theorems like Poincare-Hopf and also produce a dynamics as classically, a vector field F, a smooth section of the tangent bundle on a manifold produces a dynamics . A directed graph does not give a dynamics without telling how to go …

## Cup Length of a Graph

We discuss briefly how to make the cohomology space of a graph into a cohomology ring. In other words, how to define the cup product on the kernel of the Hodge Laplacian.

## On Knots and Cohomology and Dowker

Something about knots and something about topological data analysis and something about the general frame work to do mathematics in a finite setting.

## A Topological Topos

A bit the bigger picture about the mathematical and data structures which come in when working on these finite geometries.

## Relative Cohomology

A youtube presentation of May 13, 2023. We point out that we have a relatively simple approach to Eilenberg-Steenrod.

## Fusion Rules for Cohomology

Over the winter break I started to look at Mayer-Vietoris type rules when looking at cohomology of subsets of a simplicial complex. See January 28, 2023 (Youtube) , and February 4th 2023 (Youtube) and most recently on February 19, 2023 (Youtube). Classically, cohomology is considered for simplicial complexes and especially …

## A multi-particle energy theorem

A finite abstraact simplicial complex or a finite simple graph comes with a natural finite topological space. Some quantities like the Euler characteristic or the higher Wu characteristics are all topological invariants. One can also reformulate the Lefschetz fixed point theorem for continuous maps on finite topological spaces.

## More on Analytic Torsion

We report on some progress on analytic torsion A(G) for graphs. A(G) is a positive rational number attached to a network. We can compute it for contractible graphs or spheres.

## More on Ringed Complexes

The results mentioned in the slides before are now written down. This document contains a proof of the energy relation . There are several reason for setting things up more generally and there is also some mentioning in the article: allowing general rings and not just division algebras extends the …

## Energized Simplicial Complexes

If a set of set is equipped with an energy function, one can define integer matrices for which the determinant, the eigenvalue signs are known. For constant energy the matrix is conjugated to its inverse and defines two isospectral multi-graphs.

## The counting matrix of a simplicial complex

The counting matrix of a simplicial complex has determinant 1 and is isospectral to its inverse. The sum of the matrix entries of the inverse is the number of elements in the complex.