Calculus without limits

## Geometry of Delta Sets

In this presentation, there is a bit of advertisement for finite geometry and delta sets in particular. I also tried to get a bit into the history of finitist ideas in geometry and physics(starting with Riemann). One usually thinks about finite projective spaces when talking about “finite geometries”. I like …

## Arboricity, Dimension, Category

We aim to show that the Lusternik-Schnirelmann category of a graph is bound by the augmented dimension. We can try to prove this by using tree coverings and so look at arboricity.

## Incidence and Intersection

Barycentric and Connection graphs Barycentric graphs depend on incidence, connection graphs on intersection. Here are some examples from this blog. Both graphs have as the vertex set the complete subgraphs of the graph. In the connection graph, we take the intersection, in the Barycentric case, we take incidence. Here are …

## More on Graph Arithmetic

A few more remarks [PDF] about graph arithmetic. Now on the ArXiv. (Previous documents are here (June 2017 ArXiv), here (August 2017 ArXiv) and here (May 2019 ArXiv). The talk below on youtube was used for me to get organized a bit. It does not look like much has changed, …

## Topology of Manifold Coloring

Last summer I have had some fun with codimension 2 manifolds M in a purely differential geometric setting: a positive curvature d-manifold which admits a circular action of isometries has a fixed point set K which consists of even codimension positive curvature manifold. The Grove-Searle situation https://arxiv.org/abs/2006.11973 is when K …

## More theorems about graphs

Last week, I practiced a bit more enhanced talk presentation style in which, rather than with slides, the content is spoken and then enhanced in the video using additonal illustrations. The presentation deals with some things I have done in graph theory which I consider as part of quantum calculus …

## Homotopy Manifolds

The problem of discretization It is a question which probably was pondered first by philosophers like Democrit or Archimedes. What is the nature of space? It is made of discrete stuff or is it a true continuum? As Plato already noted, such questions border to being pointless as we live …