Topology of Manifold Coloring

Last summer I have had some fun with codimension 2 manifolds M in a purely differential geometric setting: a positive curvature d-manifold which admits a circular action of isometries has a fixed point set K which consists of even codimension positive curvature manifold. The Grove-Searle situation https://arxiv.org/abs/2006.11973 is when K …

Energy relation for Wu characteristic

The energy theorem for Euler characteristic X= sum h(x)was to express it as sum g(x,y)of Green function entries. We extend this to Wu characteristic w(G)= sum h(x) h(y) over intersecting sets. The new formula is w(G)=sum w(x) w(y) g(x,y)2, where w(x) =1 for even dimesnional x and w(x)=-1 for odd dimensional x.

Physics on finite sets of sets?

Introduction The idea to base physics on the evolution finite set of sets is intriguing. It has been tried as an approach to quantum gravity. Examples are causal dynamical triangulation models or spin networks. It is necessary to bring in some time evolution as otherwise, a model has little chance …

Poincare-Hopf for Vector Fields on Graphs

The question In discrete Poincare-Hopf for graphs the question appeared how to generalize the result from gradient fields to directed graphs. The paper mentions already the problem what to do in the case of the triangle with circular orientation. The triangle has Euler characteristic 1. An integer index on vertices …

Hearing the shape of a simplicial complex

A finite abstract simplicial complex has a natural connection Laplacian which is unimodular. The energy of the complex is the sum of the Green function entries. We see that the energy is also the number of positive eigenvalues minus the number of negative eigenvalues. One can therefore hear the Euler characteristic. Does the spectrum determine the complex?

Discrete Atiyah-Singer and Atiyah-Bott

As a follow-up note to the strong ring note, I tried between summer and fall semester to formulate a discrete Atiyah-Singer and Atiyah-Bott result for simplicial complexes. The classical theorems from the sixties are heavy, as they involve virtually every field of mathematics. By searching for analogues in the discrete, …