Symmetry via Ergodic Theory

One of the attempts to quantize space without losing too much symmetry is ergodic theory. Much of my thesis belongs to this program. It is a flavor of quantum calculus, as “no limits” are involved. The story is closely related to Jacob Feldman, one of my heroes of my graduate and postdoc time. I write this blog entry after having … ….

What is geometry?

In the context of quantum calculus one is interested in discrete structures like graphs or finite abstract simplicial complexes studied primarily in combinatorics or combinatorial topology. Are they geometry? Are they calculus? What is geometry? In MathE320 I try to use the following definition: Geometry is the science of shape, size and symmetry. The symmetry statement is borrows from Klein’s … ….

A quaternion valued elliptic complex

This blog entry delivers an other example of an elliptic complex which can be used in discrete Atiyah-Singer or Atiyah-Bott type setups as examples. We had seen that when deforming an elliptic complex with an integrable Lax deformation, we get complex elliptic complexes. We had wondered in that blog entry whether a complex can lead to quaternion-valued fields. The discussion … ….

The Dirac operator of Products

Implementing the Dirac operator D for products of simplicial complexes without going to the Barycentric refined simplicial complex has numerical advantages. If G is a finite abstract simplicial complex with n elements and H is a finite abstract simplicial complex with m elements, then is a strong ring element with n*m elements. Its Barycentric refinement is the Whitney complex of … ….

Do Geometry and Calculus have to die?

In the book ‘This Idea Must Die: Scientific Theories That Are Blocking Progress’, there are two entries which caught my eye because they both belong to interests of mine: geometry and calculus. The two articles are provided below. [I believe it is “fair use” as a reprint of these two articles helps not only to promote the book but also … ….