The Dirac operator of Products

Implementing the Dirac operator D for products of simplicial complexes without going to the Barycentric refined simplicial complex has numerical advantages. If G is a finite abstract simplicial complex with n elements and H is a finite abstract simplicial complex with m elements, then is a strong ring element with n*m elements. Its Barycentric refinement is the Whitney complex of … ….

Do Geometry and Calculus have to die?

In the book ‘This Idea Must Die: Scientific Theories That Are Blocking Progress’, there are two entries which caught my eye because they both belong to interests of mine: geometry and calculus. The two articles are provided below. [I believe it is “fair use” as a reprint of these two articles helps not only to promote the book but also … ….

The finitist bunker

As Goedel has shown, mathematics can not tame the danger that some inconsistency develops within the system. One can build bunkers but never will be safe. But the danger is not as big as history has shown. Any crisis which developed has been very fruitful and led to new mathematics. (Zeno paradox->calculus, Epimenids paradox ->Goedel, irrationality crisis ->number fields etc.

Energy theorem for Grothendieck ring

Energy theorem The energy theorem tells that given a finite abstract simplicial complex G, the connection Laplacian defined by L(x,y)=1 if x and y intersect and L(x,y)=0 else has an inverse g for which the total energy is equal to the Euler characteristic with . The determinant of is the Fermi characteristic . In the spring 2017 linear algebra Mathematica … ….

Helmholtz free energy for simplicial complexes

Over spring break, the Helmholtz paper [PDF] has finished. (Posted now on “On Helmholtz free energy for finite abstract simplicial complexes”.) As I will have little time during the rest of the semester, it got thrown out now. It is an interesting story, relating to one of the greatest scientist, Hermann von Helmholtz (1821-1894). It is probably one of the … ….