Interaction Cohomology (II)

This is an other blog entry about interaction cohomology [PDF], (now on the ArXiv), a draft which just got finished over spring break. The paper had been started more than 2 years ago and got delayed when the unimodularity of the connection Laplacian took over. There was an announcement [PDF] which is now included as an appendix. [Not to appear … ….

Cohomology in six lines

Here is the code to compute a basis of the cohomology groups of an arbitrary simplicial complex. It takes 6 lines in mathematica without any outside libraries. The input is a simplicial complex, the out put is the basis for $H^0,H^1,H^2 etc$. The length of the code compares in complexity with computations in basic planimetric computations in a triangle (Example … ….

Is there physics for the connection Laplacian?

The classical potential $V(x,y) = 1/|x-y|$ has infinite range which violently clashes with relativity. Solving this problem had required a completely new theory: GR. It remains also a fundamental problem still in general relativity: a Gedanken experiment in which the particles in the sun suddenly transition to particles without mass shows this. [This is forbidden by energy conservation but energy … ….

Quest for a Green Function Formula

A simplicial complex G, a finite set of non-empty sets closed under the operation of taking finite non-empty subsets, has the Laplacian $L(x,y) = {\rm sign}(|x \cap y|)$. It is natural as it is always unimodular so that its inverse $g(x,y)$ is always integer valued. In a potential theoretical setup, the Green function values $g(x,y)$ measure a potential energy between … ….

More Green Function Values

We have seen that for a finite abstract simplicial complex $G$, the connection Laplacian L has an inverse g with integer entries and that $g(x,x) = 1-X(S(x))$, where $S(x)$ is the unit sphere of $x$ in the graph $G_1=(V,E)$, where $V=G$ and where (a,b) in E if and only if $a \subset b$ or $b \subset a$. We have also … ….

Isospectral Simplicial Complexes

One can not hear a complex! After some hope that some kind of algebraic miracle allows to recover the complex from the spectrum (for example by looking for the minimal polynomial which an eigenvalue has and expecting that the factorization reflects some order structure in the abstract simplicial complex), I wondered whether there is an argument proving that that there … ….